Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Vet Sci ; 10: 1107059, 2023.
Article in English | MEDLINE | ID: covidwho-2309278

ABSTRACT

Infectious bronchitis virus (IBV) has evolved through various mutation mechanisms, including antigenic drift and recombination. Four genotypic lineages of IBVs including GI-15, GI-16, GI-19, and GVI-1 have been reported in Korea. In this study, we isolated two IBVs from chicken farms, designated IBV/Korea/289/2019 (K289/19) and IBV/Korea/163/2021 (K163/21), which are two distinct natural recombinant viruses most likely produced by genetic reassortment between the S1 gene of K40/09 strain (GI-19 lineage) and IBV/Korea/48/2020 (GI-15 lineage) in co-infected commercial chickens. Comparative sequence analysis of hypervariable regions (HVRs) revealed that the K289/19 virus had similar HVR I and II with the K40/09 virus (100% and 99.2% nucleotide sequence identity, respectively), and HVR III with the IBV/Korea/48/2020 virus (100% nucleotide sequence identity). In contrast, the K163/21 virus had HVR I and II similar to the IBV/Korea/48/2020 virus (99.1% and 99.3% nucleotide sequence identity, respectively), and HVR III to the K40/09 virus (96.6% nucleotide sequence identity). The K289/19 virus exhibited similar histopathologic lesions, tissue tropism in trachea and kidney, and antigenicity with the parental K40/09 virus. The K163/21 exhibited similar pathogenicity and tissue tropism with the K40/09 virus, which were similar results with the isolate K289/19. However, it showed a lower antigenic relatedness with both parental strains, exhibiting R-value of 25 and 42, respectively. The continued emergence of the novel reassortant IBVs suggests that multiple recombination events have occurred between different genotypes within Korea. These results suggest that antigenic profiles could be altered through natural recombination in the field, complicating the antigenic match of vaccine strains to field strains. Enhanced surveillance and research into the characteristics of newly emerging IBVs should be carried out to establish effective countermeasures.

2.
Pathogens ; 10(5)2021 May 19.
Article in English | MEDLINE | ID: covidwho-2273575

ABSTRACT

Infectious bronchitis virus (IBV) initially establishes the infection in the respiratory tract and then spreads to other tissues depending on its virulence. During 2011-2018, the 4/91 IBV strain was isolated from poultry flocks affected by decreased egg production and quality in Eastern Canada. One of the Canadian 4/91 IBV isolates, IBV/Ck/Can/17-038913, was propagated in embryonated chicken eggs and molecularly characterized using whole genome sequencing. An in vivo study in laying hens was conducted to observe if IBV/Ck/Can/17-038913 isolate affects the egg production and quality. Hens were infected with IBV/Ck/Can/17-038913 isolate during the peak of egg lay, using a standard dose and routes maintaining uninfected controls. Oropharyngeal and cloacal swabs were collected at predetermined time points for the quantification of IBV genome loads. At 6 and 10 days post-infection, hens were euthanized to observe the lesions in various organs and collect blood and tissue samples for the quantification of antibody response and IBV genome loads, respectively. Egg production was not impacted during the first 10 days following infection. No gross lesions were observed in the tissues of the infected birds. The IBV genome was quantified in swabs, trachea, lung, proventriculus, cecal tonsils, kidney, and reproductive tissues. The serum antibody response against IBV was quantified in infected hens. In addition, histological changes, and recruitment of immune cells, such as macrophages and T cell subsets in kidney tissues, were measured. Overall, data show that IBV/Ck/Can/17-038913 isolate is not associated with egg production issues in laying hens infected at the peak of lay, while it demonstrates various tissue tropism, including kidney, where histopathological lesions and immune cell recruitments were evident.

3.
Coronaviruses ; 2(1):44-58, 2021.
Article in English | EMBASE | ID: covidwho-2277920

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an acute respiratory tract infection causing a pandemic that emerged in 2019 initially in China involving 13.8% cases with severe, and 6.1% with critical course and later throughout the globe. Vaccines or antiviral medications are yet to be used to prevent or treat infections of Human Coronavirus (HCoV). The much-discovered HCoV found in 2003, SARS-COVID-19, which caused respiratory syndrome, has special pathogenesis as it causes respiratory tract infection. The coronavirus spike protein's association with its host cell receptor complement is crucial in deciding the virus infectivity, tissue tropism and species variety. SARS, COVID-19, infects human cells by binding to angiotensin-converting enzyme 2 (ACE2) receptor and uses the TMPRSS2 cell protease to activate it. Lungs are most affected by COVID-19 as host cells are accessed by the virus through ACE2, which is most abundant in alveolar cells of the lungs. Special attention and efforts should be given in reducing transmission in vulnerable populations, including infants, health care providers and the elderly. COVID 19, is the main causative agent of potentially lethal disease and is of significant concern for global public health and in pandemics which was highlighted in this review.Copyright © 2021 Bentham Science Publishers.

4.
Pathogens ; 9(10)2020 Sep 24.
Article in English | MEDLINE | ID: covidwho-906221

ABSTRACT

In the early 1930s, infectious bronchitis (IB) was first characterized as a respiratory disease in young chickens; later, the disease was also described in older chickens. The etiology of IB was confirmed later as being due to a coronavirus: the infectious bronchitis virus (IBV). Being a coronavirus, IBV is subject to constant genome change due to mutation and recombination, with the consequence of changing clinical and pathological manifestations. The potential use of live attenuated vaccines for the control of IBV infection was demonstrated in the early 1950s, but vaccine breaks occurred due to the emergence of new IBV serotypes. Over the years, various IBV genotypes associated with reproductive, renal, gastrointestinal, muscular and immunosuppressive manifestations have emerged. IBV causes considerable economic impacts on global poultry production due to its pathogenesis involving multiple body systems and immune suppression; hence, there is a need to better understand the pathogenesis of infection and the immune response in order to help developing better management strategies. The evolution of new strains of IBV during the last nine decades against vaccine-induced immune response and changing clinical and pathological manifestations emphasize the necessity of the rational development of intervention strategies based on a thorough understanding of IBV interaction with the host.

5.
Virus Res ; 285: 198002, 2020 08.
Article in English | MEDLINE | ID: covidwho-165136

ABSTRACT

In the present study, an IBV strain I0305/19 was isolated from a diseased commercial broiler flock in 2019 in China with high morbidity and mortality. The isolate I0305/19 was clustered together with viruses in sublineage D of GI-19 lineage on the basis of the complete S1 sequence analysis. Isolate I0305/19 and other GI-19 viruses isolated in China have the amino acid sequence MIA at positions 110-112 in the S protein. Further analysis based on the complete genomic sequence showed that the isolate emerged through at least four recombination events between GI-19 ck/CH/LJS/120848- and GI-13 4/91-like strains, in which the S gene was found to be similar to that of the GI-19 ck/CH/LJS/120848-like strain. Pathological assessment showed the isolate was a nephropathogenic IBV strain that caused high morbidity of 100 % and mortality of 80 % in 1-day-old specific-pathogen-free (SPF) chicks. The isolate I0305/19 exhibited broader tropisms in different tissues, including tracheas, lungs, bursa of Fabricius, spleen, liver, kidneys, proventriculus, small intestines, large intestines, cecum, and cecal tonsils. Furthermore, subpopulations of the virus were found in tissues of infected chickens; this finding is important in understanding how the virulent IBV strains can potentially replicate and evolve to cause disease. This information is also valuable for understanding the mechanisms of replication and evolution of other coronaviruses such as the newly emerged SARS-CoV-2.


Subject(s)
Chickens/virology , Coronavirus Infections/veterinary , Infectious bronchitis virus/genetics , Infectious bronchitis virus/pathogenicity , Poultry Diseases/virology , Recombination, Genetic , Viral Tropism , Animals , China , Coronavirus Infections/virology , Genome, Viral , Infectious bronchitis virus/classification , Infectious bronchitis virus/physiology , Phylogeny , Specific Pathogen-Free Organisms , Spike Glycoprotein, Coronavirus/genetics , Virus Replication
6.
Vet Microbiol ; 244: 108693, 2020 May.
Article in English | MEDLINE | ID: covidwho-101621

ABSTRACT

The recent pandemic caused by the novel human coronavirus, referrred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), not only is having a great impact on the health care systems and economies in all continents but it is also causing radical changes of common habits and life styles. The novel coronavirus (CoV) recognises, with high probability, a zoonotic origin but the role of animals in the SARS-CoV-2 epidemiology is still largely unknown. However, CoVs have been known in animals since several decades, so that veterinary coronavirologists have a great expertise on how to face CoV infections in animals, which could represent a model for SARS-CoV-2 infection in humans. In the present paper, we provide an up-to-date review of the literature currently available on animal CoVs, focusing on the molecular mechanisms that are responsible for the emergence of novel CoV strains with different antigenic, biologic and/or pathogenetic features. A full comprehension of the mechanisms driving the evolution of animal CoVs will help better understand the emergence, spreading, and evolution of SARS-CoV-2.


Subject(s)
Coronaviridae/classification , Coronavirus Infections/veterinary , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Animals , Betacoronavirus/classification , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronaviridae/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Disease Models, Animal , Evolution, Molecular , Humans , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2 , Zoonoses/epidemiology , Zoonoses/transmission , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL